
Faster Binary Arithmetic Operations on Encrypted Integers 

Jingwei Chen 1, Yong Feng 1, Yang Liu 2  and Wenyuan Wu 1 
1 Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and 

Intelligent Technology, Chinese Academy of Sciences, Chongqing, China 
2 College of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, China 

Abstract. Fully homomorphic encryption (FHE) makes a large number of applications available in cloud 
computing environment. Following Gentry’s seminal work, many FHE schemes have been presented. 
Among known FHE schemes, the Brakerski-Gentry-Vaikuntanathan scheme with corresponding 
optimizations is one of the most potential candidates for practical use, and has been implemented by Shoup 
and Halevi in a homomorphic encryption C++ library HElib. Based on HElib, Xu et al. (2016) reported their 
implementation of binary arithmetic operations over encrypted integers. In this paper, we optimize their 
implementation further. More specifically, the multi-thread technique is used to accelerate the arithmetic 
circuits. Moreover, ciphertext slots are fully used in our implementation. As a result, these techniques enable 
us to evaluate 600 additions of two 64-bit integers simultaneously within 25 seconds, about 0.042 seconds for 
per-addition time on average. 

Keywords: FHE, HElib, integer arithmetic 

1. Introduction 

Nowadays, more and more individuals save and process sensitive data on cloud servers. Naturally, the 
security is the biggest problem that clients worry about. Fully homomorphic encryption (FHE) allows cloud 
servers to running any computable function on encrypted data, so that it can be used in an extensively large 
number of applications, such as consumer privacy in advertising, medical application, data mining, etc. 

Although the usefulness of FHE had already been noticed by Rivest et al. [1] as early as 1978, the first 
breakthrough was not made until Gentry’s work [2] in 2009. Followed Gentry’s seminal work, many FHE 
schemes appear, for instance [3]–[12]. As indicated by Gentry et al. in [13], the (Ring-)LWE based 
Brakerski-Gentry-Vaikuntanathan (BGV) [6] scheme is one of the few variants that seem the most likely to 
yield “somewhat practical” homomorphic encryption. The BGV scheme, along with many optimizations in 
[7], [12] to make the homomorphic evaluation faster, has been implemented in a C++ library by Halevi and 
Shoup, named HElib [14]. HElib focuses on effective use of the Smart-Vercauteren ciphertext packing 
techniques [12], which make single-instruction-multiple-data (SIMD) operations available for homomorphic 
evaluation. Since almost all known FHE schemes, including BGV, are designed for circuits, HElib supplies 
only the basic circuit functions. For example, HElib does not include a function for homomorphic evaluation 
of the decimal addition of two integers. However, it is undoubted that this kind of decimal integer arithmetic 
operations is frequently used in practice. Based on HElib, Chen and Gong [15] and Xu et al. [16] 
implemented decimal arithmetic operations for integers via binary circuits. 

In this paper, we optimize the above routine further. More precisely, the multi-thread technique is used to 
accelerate the arithmetic circuits, which makes our implementation nearly 2× faster than that of Xu et al.’s 
implementation; see Section IV for details. Moreover, ciphertext slots are fully used in our implementation, 
while it seems that only one slot is used in Xu et al’s implementation. As a result, these techniques enable us 
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to evaluate 600 additions of two 64-bit integers simultaneously within 25 seconds, i.e., about 0.042 seconds 
for per-addition time on average; see Section IV for more experimental results.  

1.1. Related Work 

Homomorphically encrypted integer arithmetic operations are the fundamental of higher level 
applications. Naehrig et al. [17] implemented a RLWE-based somewhat homomorphic encryption scheme in 
MAGMA. Wu and Haven [18] reported their implementation based on HElib as well, however, they utilized 
large plaintext spaces over  ℤ𝑝  with prime 𝑝 > 2128 . Their implementation does not include the 
homomorphic evaluation of the carry bits, so does the implementation [10] of the DGHV FHE scheme [3]. 
To the best of our knowledge, Chen and Gong [15] seems the first published work to implement the binary 
integer arithmetic by using HElib, however, they only reported encrypted integer arithmetic with at most 4 
bits. Xu et al. [16] improved the efficiency by using several optimizations and designing the circuits more 
carefully. In this paper, we optimize the above implementation further and obtain some practical average per-
operation performances. Cheon et al. [19] reported their implementation for binary integer addition (with 
equality test and comparison) based on well-designed SIMD circuits and HElib. The way of using SIMD of 
our implementation is different from Cheon et al.’s. This leads to our implementation allowing element-wise 
integer vector arithmetic operations. 

2. Backgrounds 

In this section, we recall the BGV scheme and HElib. We refer to [6], [20], [21] for more details. 

2.1. The BGV Scheme 

The BGV scheme [6] is an improvement of Brakerski and Vaikuntanathan [4], which is based on 
standard assumptions supported by worst-case hardness of LWE [22] or RLWE [23]. In addition, BGV is 
capable of evaluating arbitrary circuits of a priori bounded depth without the bootstrapping procedure. Here 
we use a variant of the basic BGV encryption scheme that is implemented in HElib; see, e.g., [16, Se. 2.2]. 

We limit the plaintext space to R2 = ℤ2[𝑥]/Φ𝑚(𝑥) in this paper, since it is convenient for integer 
arithmetic circuit design, although the scheme described above also handles plaintext spaces larger than R2. 
We also note that 𝑚 is the dominating parameter for efficiency as it determines the size of computation. The 
BGV scheme support ciphertext packing. The ciphertext packing technique allows us to evaluate a function 
homomorphically in parallel on ℓ  blocks of encrypted data. It works essentially by packing multiple 
plaintexts into one ciphertext. More specifically, when the plaintext space is limited to R2 = ℤ2[𝑥]/Φ𝑚(𝑥), 
where Φ𝑚(𝑥) is the 𝑚-th cyclotomic polynomial, Φ𝑚(𝑥) can be factorized into ℓ irreducible factors of same 
degree 𝑑 = 𝜑(𝑚)/ℓ, i.e., Φ𝑚(𝑥) = 𝑓1(𝑥) ⋯ 𝑓ℓ(𝑥) where 𝜑(∗) is the Euler’s totient function. Each factor 
corresponds to a plaintext slot. Thus, for each 𝑎 ∈ R2, it can be represented as an ℓ-vector (𝑎 mod 𝑓𝑖)𝑖  . 
Using the techniques in [7], [12], one can perform SIMD operations on ℓ blocks of ciphertexts. Just like for 
integer Chinese Remaindering, addition and multiplication in R2 correspond to element-wise addition and 
multiplication of the vectors of slots. 

2.2. The HElib Implementation  

HElib [14] is an open-source C++ implementation of the BGV scheme based on the C++ Number 
Theory Library (NTL) [24]. There are many useful functions in the library besides the evaluation of the 
AND gate and the XOR gate, including some initialization functions, and some helper classes like 
EncryptedArray which provides us with easy encryption and manipulation to the ciphertext slots. Due to the 
parallelization, SIMD operations bring much better amortized per-bit timing. We refer to the document [21] 
and the source code for the exact usage of HElib. Here we only focus on some parameter settings which play 
important roles in practice. In the library, the ciphertext space is R𝑞 = ℤ𝑞[𝑥]/Φ𝑚(𝑥), where 𝑞 = 𝑝1𝑝2 ⋯ 𝑝𝑛 
is the modulus and each 𝑝𝑗 is a small prime generated by the library. By double CRT representation, each 
ciphertext is represented as an 𝑛 × 𝜑(𝑚) matrix. Each entry of the matrix is an evaluation of the ciphertext 
polynomial at certain point modulo 𝑝𝑗 for some 𝑗. According to [13, Appendix C] (in the full version), the 
parameter 𝑚 is chosen such that 

𝜑(𝑚) ≥ (𝜆 + 110)(𝐿𝑐(log 𝜑(𝑚) + 23) − 8.5)/7.2,                                                                     (1) 
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where 𝐿𝑐 is the minimum number of levels of modulus chain and 𝜆 is the security parameter. 
In applications, the minimum number of levels in the modulus chain 𝐿𝑐  in HElib is the number of 

modulus switches 𝐿𝑠  plus one. In HElib, 𝐿𝑠 ≈ 2⌈𝐿/2⌉ , and thus 𝐿𝑠 ≈ 2⌈𝐿/2⌉ + 1 , where 𝐿  is the 
multiplicative depth we want to support. From (1), a larger 𝐿𝑐  implies a larger 𝜑(𝑚). This makes both 
addition and multiplication of ciphertexts less efficient. Thus, when we design a circuit for a certain 
application, we should choose those circuits with the multiplicative depth as less as possible. Totally 
speaking, the security parameter 𝜆 and 𝐿𝑐 determine the computing overhead.  

3. Implementation of Arithmetic Operations 

In this section, we present our implementation of integer arithmetic operations by using AND and XOR 
gate evaluation in HElib. We assume that every integer is written in a little-endian two’s complement 
representation. We use one ciphertext to represent one bit in our implementation, and a double-ended queue 
of ciphertexts to represent an encrypted binary integer. In what follows, all bits we use are encrypted by the 
HElib function EncryptedArray::encrypt under the same public key. 

3.1. Binary Integer Arithmetic Algorithms 

We implement several different adders, including Ripple Carry Adder (RCA) and Carry Lookahead 
Adder (CLA), and hence several different circuits for subtraction and multiplication as well. 

We implement an 𝑛-bit RCA according to [16, Algorithm 1]. This adder adds one bit at a time, from the 
least significant bit to the most significant bit. The multiplicative depth is 𝐿 = 𝑛 − 1, since for every bit 
except MSB we need one AND gate and every next bit depends on the previous one. We also implemented 
the CLA adder for both 16 bits encrypted integers and 64 bits integers, respectively, as in [16, Algorithm 2]. 
We note that this adder requires more bit operations than RCA, but with lower multiplicative depth. More 
precisely, the CLA adder circuit has multiplicative depth 𝐿 = 𝒪(log 𝑛) (see [25]). 

For subtraction, we can obviously obtain two algorithms which correspond to the RCA adder and the 
CLA adder, respectively, and their multiplicative depths are 𝑛 − 1 and 𝒪(log 𝑛), respectively. 

For multiplication, we use the school method, i.e., using one binary integer to multiply every bit of the 
other number and then adding all the middle results together. The multiplicative depth of the multiplication 
circuit is one level larger than the addition.  

For integer division with remainder, we use the non-restoring method, which can be found, e.g., [15]. 
The multiplicative depth is about len(𝑎) · len(𝑏) for 𝑎 ÷ 𝑏, where len(𝑎) is the bit length of 𝑎. 

3.2. Using Full of Slots 

In fact, one of the most important reasons that we choose the one-ciphertext-one-bit representation of 
encrypted integers is that we want to make our implementation support encrypted integer vector operations. 
Since that BGV and HElib support SIMD, such a target can be implemented by using full of ciphertext slots. 

For example, suppose that 𝒂 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑘) and 𝒃 = (𝑏1, 𝑏2, ⋯ , 𝑏𝑘) are two k-dimensional integer 
vectors to be added and that the bit length of each 𝑎𝑖  and 𝑏𝑖  is at most 𝑛. First, we choose appropriate 
parameters such that there are at least 𝑘 slots supported by the encryption scheme. Then, in the 𝑟-th slot of 
one ciphertext, we only encrypt one bit for 𝑎𝑟 or 𝑏𝑟. So after running EncryptedArray::encrypt at most 2𝑛 
times, we obtain 2𝑛 ciphertexts, each of which represents one encrypted bit for 𝑎𝑖  or 𝑏𝑖 . At last, we can 
directly revoke the adder we mentioned previously and obtain the elementwise encrypted addition results. 
The multiplicative depth of this process is the same as that of the corresponding adder that we use. 

In addition, due to using R2  as our plaintext space, our implementation is in fact an embedding of 
relatively small plaintexts into large ciphertexts. The full use of ciphertext slots therefore enable more 
efficient use of both space and computational resources. 

3.3. Multi-thread Implementation 

As mentioned previously, HElib is based on NTL. Thanks to thread safe mode of NTL, HElib is 
eventually thread safe since March 2015. So we can adapt our implementation accordingly such that it 
supports multi-thread computation. 
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First, we add #include <NTL/BasicThreadPool.h> into our test.cpp file and then set the number of 
threads we want to use by SetNumThreads(nthreads). During the main body of the code, if it is suitable for 
parallelization, we only use the higher-level macros for writing simple parallel ‘for’ loops. Namely, before 
and after the ‘for’ loop, we add NTL_EXEC_RANGE(n, first, last) and NTL_EXEC_RANGE_END, 
respectively. 

4. Experiments 

In this section, we show the performance of our implementation and the comparison with that in [16]. 
We use the HElib function FindM() to decide the parameter m, which is very important for the performance. 
We set the security level as a reasonable value 𝜆 = 80 (the same as [15], [16]). Besides, we set the parameter  
𝐿𝑐 (see (1)) the same as [16] as well. All time are obtained on a PC with a Intel Core i7 4790 CPU of 3.60 
GHz and 8 GB RAM by using 8 threads. In Table 1, the #bits column represents the current circuit supports 
#bits encrypted integer arithmetic, 𝑚 is decided by the security parameter 𝜆 and 𝐿𝑐  as in (1), the #slots 
column is the number of slots, the Xu et al. column is the performance of the implementation in [16] and the 
timing is counted in seconds.  

Table 1: Performance of Binary Encrypted Integer Arithmetic 

 circuit #bits 𝑚 #slots 𝐿𝑐 Xu et al. Time 

+ RCA 16 14351 504 17 2.16 1.16 

 CLA 16 7781 150 7 2.53 2.05 

 CLA 64 13981 600 13 37.69 24.36 

− RCS 16 14351 504 17 2.17 1.20 

 CLA 16 7781 150 7 2.52 2.02 

 CLA 64 13981 600 13 37.16 24.73 

× RCA 8 8191 630 9 4.62 2.63 

 RCA 16 14351 504 17 46.32 29.34 

÷ RCA 4 18631 720 21 14.63 7.74 

From Table 1, it is obvious that our implementation outperforms that of [16]. Moreover, duo to full use 
of slots, the time in last column is the cost for doing #slots operations simultaneously. For instance, our 
implementation is able to evaluate 600 additions of two 64-bit integers simultaneously within 25 seconds, i.e., 
about 0:042 seconds for per-addition time on average. 

5. Conclusion and Discussion 

In this paper, we implemented the arithmetic operations for encrypted integers by using HElib. Our 
implementation extends Xu et al.’s work [16] in two folds. For one, we use full of ciphertext slots such that 
our implementation supports encrypted integer vector operations element-wise, which leads to a practical 
average performance. For another, our implementation supports multi-thread mode, which leads to a speedup.  

However, we also read from Table 1 that the speedup is not good as 8× faster. The reason is that our 
parallel strategy is in the code level. Namely, all circuits we use are not designed for parallel computing. For 
example, it is well known that the RCA adder is not suitable for parallelization. For CLA, the parallelization 
is under consideration. In addition, it is an intriguing topic to design and implement circuits for encrypted 
fixed point number system. 
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