
ISBN: 978-981-94-1156-6

2024 the 14th International Workshop on Computer Science and Engineering (WCSE 2024)

doi: 10.18178/wcse.2024.06.018

Semantic-based Big Data Integration with Apache Spark

Nang Kham Soe 1, + and Myat Pwint Phyu1

1 University of Information Technology, Yangon, Myanmar

Abstract. Providing a consistent and unifying view of all data is a challenging task in the big data context

because each big data store has its own data model and permits flexible schema. Moreover, advanced

technologies (such as Hadoop MapReduce, Apache Spark) are needed to be able to leverage the integration

process of big data. Although differences in data models can be solved by using Apache Spark, it cannot be

used for integrating data with different data schemas. For these reasons, a semantic-based data integration

approach is proposed to provide a unified view of data in different big data stores. The approach generates

schemas by means of local ontologies for data in different big data stores and merges extracted ontologies by

using the proposed alignment algorithm. Then, the global (integrated) ontology is converted to the schema

using the Spark Dataset API. The schema is used in the data integration step. The main steps of the proposed

system are to align local ontologies for global ontology construction, convert global (integrated) ontology to

schema in the form of Apache Spark Dataset, and integrate data by applying the schema. The proposed

approach is implemented on top of the Apache Spark framework, and the study uses Apache Cassandra and

MongoDB as big data stores. Experimental evaluation is conducted to verify the accuracy of the proposed

approach.

Keywords: Big Data Integration, Apache Spark, NoSQL databases, Ontology

1. Introduction

With the proliferation of digital technologies, businesses and organizations are generating vast amounts

of data every day. These data may be stored in different big data stores based on their needs. Data in

different big data stores needs to be used and provide a unified view to get precise insight in some domains

(i.e., academic, transport, energy). The NoSQL data systems [1] are innovative database technologies for

storing big data. NoSQL data systems allow adding new data records with different schemas to the same

table dynamically. There are four main types (document-oriented, columnar, key-value, and graph) of data

models in NoSQL databases [2]. Document-oriented data model provides data entities as documents. The

documents may be JSON, BSON, or XML format. Examples of document-oriented NoSQL data stores are

MongoDB and DynamoDB. The columnar model provides for storing data in columns instead of rows.

Apache Cassandra implements such type of data model. Key-value data model allows the simplest data

structure, where the data (values) are accessed by strings called keys. The data stores, such as BerkeleyDB

and Riak, are implemented on this model. Graph data model allows data entities to be nodes in a connected

graph, and relationships between each entity are expressed by properties and labels. The popular graph-based

NoSQL databases are Neo4J and InfoGrid.

Providing a unified view of data is a challenging task in the big data context because of the heterogeneity

of data models and data semantics (schema) in big data stores [1]. Heterogeneity problems can be addressed

by using ontology. Ontologies are formal representation, have been used in data integration systems because

they provide an explicit and machine-understandable conceptualization of a domain [3]. With the volume

and variety challenges in the big data context, data integration task requires a combination of advanced

technologies (such as Hadoop MapReduce, Apache Spark). Apache Spark [4] provides an interface that

allows to program large clusters with implicit data parallelism. Data from different data sources can be

translated into a built-in data structure (immutable lists, data frames) with Spark.

The proposed system is implemented using Apache Spark to homogenize data in different data stores and

improve the performance of the system. Apache Spark native data integration operators allow data with the

+ Corresponding author.

E-mail address: nangkhamsoe@uit.edu.mm.

121

same schema to be integrated. Therefore, we apply ontology in the common schema extraction phase for big

data contexts. In this study, MongoDB (document-oriented NoSQL database) and Apache Cassandra

(columnar NoSQL database) are used as data sources. In order to provide a unified view of data in NoSQL

data systems, the proposed system follows four steps. These are homogenizing data from different data stores,

common schema extraction using ontology, transforming formal representation of schema to spark dataset

schema, and integrating data using spark dataset schema.

The remainder of the paper is organized as follows: Section 2 explains Apache Spark, and the ontology-

based big data integration is described in Section 3. The literature survey is presented in Section 4, and the

proposed system is explained in Section 5. Section 6 describes the testing environment and experimental

results. Finally, the conclusion is in Section 7.

2. Apache Spark

Apache Spark is an open-source cluster computing platform for batch and real-time data processing.

Apache Spark's key feature is in-memory cluster computing, which boosts an application's processing speed.

It's built to handle a variety of workloads, including batch applications, iterative algorithms, interactive

queries, and streaming [5]. Spark effectively hides the complexities of distributed processing behind a

convenient API. Data sources can be translated into immutable lists (data frames, dataset) and then

transformed with a declarative API based on functional programming primitives (such as map, fold, and

groupBy). Spark will split data in the background, distribute the partitions to a cluster of machines, optimize

user-provided computations to reduce data movement, and apply them in parallel [4]. It can be used as a

standalone framework on a single machine, with one executor for each CPU core. A cluster manager, such as

Spark's standalone cluster manager, YARN, or Mesos, will manage the cluster of servers that Spark will use

to execute tasks. In the Apache Spark framework, the data is read into a dataset (Spark's main data structure)

by the Spark Context object. Spark can read input files, automatically deduce the schema, and load it as a

native dataset using Spark SQL.

3. Ontology-based Data Integration

An ontology specifies concepts as well as the relationships that exist between them in the specified

domain. Ontologies are used in data integration for five applications [3]:

• Local ontology construction for each data source's metadata (source schemas),

• Global ontology construction for providing a conceptual view of the schematically heterogeneous

source schemas,

• Supporting high-level queries (building a query without specialized knowledge of the different data

sources),

• Declarative mediation (global ontology is used as a declarative mediator for query rewriting between

peers),

• Mapping support by providing a thesaurus, formalized in terms of an ontology.

Our system applied ontology for local ontologies construction and global conceptualization in common

schema extraction.

4. Related Works

Some authors presented ontology-based approaches to solve heterogeneity problems (data models,

semantics (schema)) in big data integration. Cure et al. proposed a data integration system [6] to retrieve

information effectively. The proposed system has been implemented using Apache Cassandra and MongoDB

to overcome different data models and schemas of these data stores. They create local ontologies and build a

global ontology based on the local ontologies' alignment results. To harmonize the two local ontologies, they

used several alignment methods. They enriched local ontologies for alignment using the IDDL reasoner.

Then, for simple correspondences, they applied three alignment methods (OWL-lite Alignment, AROMA [7],

and JWNL Alignment). They adopted graph formalism for complex correspondences. Abbes et. al presented

MongoDB-based big data integration approach using modular ontologies [8] to address structural (data

schema) heterogeneity. In matching local ontologies step for generating global ontology, the Levenshtein

122

distance dissimilarity function is used for string matching and Wu and Palmer similarity measure are adopted

for discovering structural similarity. Their approach used MongoDB as data sources and generated OWL as

target data format. Mountasser et al. proposed a semantic-based big data integration framework with the aim

of addressing big data challenges [9] and the variety of data schema problems. Their approach parses the

entities in local ontology and stores them in HBase. In the matching steps, a clustering approach with several

alignment methods (language-based, string-based, and graph-based) is used. This framework was

implemented on top of Hadoop MapReduce and allowed structured, semi-structured, and unstructured data

as input data. Finally, the complex correspondences are discovered by graph formalism. The proposed

framework extracts OWL as the target data format. Stripelis et al. proposed a virtual mediation layer for data

integration on top of Apache Spark [10] while considering the different data format. Data in PostgreSQL

DBMS, XML data in the eXtensible Neuroimaging Archiving Toolkit (XNAT), and data in MySQL DBMS

are used in the system.

Among the related works, big data processing tools are used for improving the performance of the

system in the two systems [9-10]. And all above mentioned works applied ontologies in common schema

extraction and data integration phases. Our proposed system is implemented on top of Apache Spark to

overcome data models heterogeneity problem and only applied ontologies for common schema extraction

because of limitation for the size of the memory in which data (triple format) level integration. Moreover, the

study presents semantic-based approach to solve data semantics(schema) heterogeneities problem.

5. The Proposed System

To provide a unified view of data in different NoSQL databases, the proposed system follows three tasks:

These are homogenizing data sources, sematic-based common schema extraction, and data integration by

applying common schema. It uses MongoDB and Cassandra as the data sources. The proposed system is

implemented on top of Apache Spark to overcome the heterogeneity challenge in the data model of NoSQL

databases (MongoDB, Cassandra). The overall system architecture is depicted in Fig 1.

5.1. Homogenizing Data

Data are loaded from MongoDB and Apache Cassandra onto the Apache Spark framework as native

datasets using Spark SQL. The Spark native dataset is formed as a table in the RDBMS. Common schema

extraction and data integration processes are performed on these native datasets. The number of datasets

Homogenizing data

Common schema extraction

Integrate data using dataset schema

Generate local ontologies by algorithm 1

Spark

dataset

 MongoDB

Extract global ontology by algorithm 2

Converting global ontology to spark dataset

schema by algorithm 3

Spark

dataset

Apache Spark

JSON

Apache

Cassandra

Fig. 1: The overall system architecture.

123

depends on the number of loaded tables from Cassandra and the number of loaded documents from

MongoDB to be integrated.

5.2. Semantic-based Common Schema Extraction

Each data source may contain data with different schemas in the same domain based on application

needs. Moreover, NoSQL databases allow different schemas in the same table. Apache Spark native data

integration UNION operator cannot integrate if it is not in the same schema. The JOIN operator integrates all

columns from both datasets, but it does not consider column duplication. Therefore, a semantic-based

common schema extraction algorithm is proposed in this system. There are three main steps in this task:

generating local ontologies from each source, extracting global ontology by merging local ontologies, and

converting global ontology to the Spark dataset schema.

5.2.1. Generating Local Ontologies from each source

In this step, schemas from each dataset are mapped to local ontologies using the mapping algorithm.

Spark dataset schema forms the same structure as schema of table in Relational Database. To generate local

ontology, the proposed system creates a class for each data set. Then, columns that have primitive types are

mapped to data properties of the class and columns that have complex types (array, struct, map) are

transformed into object properties of the class. Then, annotation for the object property is added based on

their type. After that, the created class is inserted into the ontology. After this step, the two local ontologies

for loaded data from Cassandra and data from MongoDB are extracted.

Algorithm 1: Mapping algorithm

Input: spark datasets

Output: Local Ontology

BEGIN

FOR each dataset

Create a class.

Transform columns that have primitive types into dataProperties of the class.

Map columns that have complex types(array,struct,map) to objectProperties of the class and annotate

objectProperties based on its type .

Add created class in the ontology.

END FOR

END

5.2.2. Extracting Global Ontology by Merging Local Ontologies

Before merging the two local ontologies, the proposed system aligns each class of ontology with every

class of other ontology. To do so, the study firstly compares two strings for class names, data properties

names, and object properties names of two different local ontologies by using the Jaccard similarity measure.

Then, the two different strings are semantically compared by using WordNet [11].

The ontology class may contain data properties and object properties. The proposed system considers the

names and types of the data property for the similarity of two data properties calculation of the two different

classes δ (c.dPro , c'.dPro) as presented in equation 1.

𝛿(𝑐. 𝑑𝑃𝑟𝑜, 𝑐′. 𝑑𝑃𝑟𝑜) = 0.5 ∗ 𝛿(𝑐. 𝑑𝑃𝑟𝑜𝑁𝑎𝑚𝑒, 𝑐′. 𝑑𝑃𝑟𝑜𝑁𝑎𝑚𝑒) + 0.5 ∗ 𝛿(𝑐. 𝑑𝑇𝑦𝑝𝑒 , 𝑐′. 𝑑𝑇𝑦𝑝𝑒) (1)

The object properties of the two classes in different local ontologies are compared by using names and

ranges of objectProperties as expressed in equation 2.

𝛿 (𝑐. 𝑜𝑃𝑟𝑜, 𝑐′. 𝑜𝑃𝑟𝑜) = 0.5 ∗ 𝛿(𝑐. 𝑜𝑃𝑟𝑜𝑁𝑎𝑚𝑒, 𝑐′. 𝑜𝑃𝑟𝑜𝑁𝑎𝑚𝑒) + 0.5 ∗ 𝛿(𝑐. 𝑅𝑎𝑛𝑔𝑒 , 𝑐′. 𝑅𝑎𝑛𝑔𝑒) (2)

The ontologies alignment procedure takes the two local ontologies as input and returns the alignment

result as expressed in algorithm 2. The alignment result is an array of the most similar class pairs for each

class. After calculating the similarity of each class of the two ontologies, the classes pair which has

maximum similarity in the alignment result is selected.

The study applies the cosine similarity measure for comparing two different classes calculation.

Therefore, the two classes are needed to be transformed into the two vectors based on the alignment result

(similarity scores of classes names, similarity scores of each data property, and similarity scores of each

124

object property). After transforming vectors for the two selected classes, the similarity score of the two

different classes δ (c, c') is calculated by using equation 3. The measure finds the dot product of the vectors

divided by the product of their lengths to get similarity of two classes.

𝛿(𝑐, 𝑐′) =
𝑐.𝑐′⃗⃗⃗⃗

‖𝑐‖⋅‖𝑐′⃗⃗ ⃗⃗ ‖
 (3)

The classes in the two ontologies are merged based on the similarity score of the two different classes to

generate global ontology. The classes merging procedure has two conditions to merge the two classes. The

two classes c and c′ are merged into the common class in the global ontology if the similarity level of the pair

is 1.0. This means that the two schemas are completely the same. The two classes c and c′ are merged after

doing some update c if the similarity level of the pair is less than 1.0 and greater than or equal to 0.5. The

classes pair which similarity levels below 0.5 are not merged. Each class of these pair is created in global

ontology.

5.2.3. Converting Global Ontology to Spark Dataset Schema

In this step, the system converts global ontology to spark data schema because data integration process

implemented by Spark Dataset API. The transforming ontology to spark dataset schema procedure is

described in algorithm 3. The schema will be used in the data integration phase as the common schema from

two different sources.

5.3. Data Integration by Applying Spark Dataset Schema

By using spark dataset schema, data from different sources are integrated into JSON file. The file is

ready to use for later tasks in data management.

6. Experiments

For our experiments, Apache Spark version 3.0.1 on Windows 10 Pro machine equipped with an Intel

Core i5-950 processor at 2.8 GHz and 8GB of RAM are used. The proposed system is deployed by

standalone cluster mode using 3 Spark executors allocating 2 cores and 2GB of RAM for each one. As big

data stores, Apache Cassandra 3.10 and MongoDB 3.6 are used. OWL API 5.0 version for ontologies

Algorithm 2: Ontologies alignment algorithm

Input: Two ontologies o and o′

Output: AlignResult

BEGIN

FOREACH class c of o DO

 FOREACH class c′ of o′ DO

 Calculate δ(c.dPro,c'.dPro) by equation 1

 Calculate δ(c.oPro,c'.oPro) by equation 2

 Calculate δ (c, c′) by equation 3

 Set c, c′ and δ (c, c′) to simpairs

 END FOR.

 Set max (simpairs) to ALignResult

 END FOR

END

Algorithm 3: Transforming ontology to spark dataset schema algorithm.

Input: Global ontology

Output: spark dataset

BEGIN

 FOR each class of the global ontology

 Create a dataset.

 Transform data properties of the class into columns of the dataset and the types of columns is based on type of

data properties.

 Map object properties of the class to columns of the dataset and the types of columns is based on annotation of

object properties.

 END FOR

END

125

construction is used. As a testing dataset, this study uses MAG data (papers, authors, venue) and AMier data

(papers, authors, venue) that are available in [12]. To verify accuracy of the proposed semantic-based

common schema extraction approach in terms of precision, recall and F-measure as shown in Fig 2. We

observe that the accuracy result is the same when setting threshold (0.7,0.8, 0.9) in the matching stage. The

lower and higher threshold may affect the accuracy result. Therefore, the proposed system will be used

threshold (0.8) as optimal threshold value for matching ontologies.

Fig. 2: The accuracy of proposed common schema extraction approach.

7. Conclusion

Providing a unified view of data integration in different NoSQL databases is a challenging task because

of the heterogeneity of data models and data schemas. Moreover, data integration for big data context is

required with the aid of big data processing framework. Therefore, a semantic-based big data integration

approach is proposed. The proposed system applies ontology in the common schema extraction phase and

implements on top of apache spark. Evaluation is conducted to verify the accuracy of the common schema

extraction by means of Precision, Recall, and F-measure. The result shows that accuracy is steady when

setting threshold (0.7, 0.8, 0.9). Therefore, the study choses threshold value (0.8) for our proposed system.

As a future work, the accuracy of the proposed approach will be verified by other datasets and the

performance of the system will be observed.

8. References

[1] Amghar, Souad, Safae Cherdal, and Salma Mouline. "Data integration and nosql systems: A state of the art." In

Proceedings of the 4th International Conference on Big Data and Internet of Things, pp. 1 -6. 2019.

[2] Amghar, Souad, Safae Cherdal, and Salma Mouline. "Which NoSQL database for IoT applications?." In 2018

international conference on selected topics in mobile and wireless networking (mownet), pp. 131-137. IEEE, 2018.

[3] Cruz, Isabel F., and Huiyong Xiao. "The role of ontologies in data integration." Engineering intelligent systems for

electrical engineering and communications 13, no. 4 (2005): 245.

[4] Gousios, Georgios. "Big data software analytics with Apache Spark." In Proceedings of the 40th International

Conference on Software Engineering: Companion Proceedings, pp. 542-543. 2018.

[5] Apache sparkTM - unified engine for large-scale data analytics. Available at: https://spark.apache.org/. (Accessed:

09 May 2024).

[6] Curé, Olivier, Myriam Lamolle, and Chan Le Duc. "Ontology based data integration over document and column

family oriented NOSQL." arXiv preprint arXiv:1307.2603 (2013).

[7] David, Jérôme. "Association rule ontology matching approach." International Journal on Semantic Web and

Information Systems (IJSWIS) 3, no. 2 (2007): 27-49.

[8] Abbes, Hanen, and Faiez Gargouri. "MongoDB-based modular ontology building for big data integration." Journal

on Data Semantics 7 (2018): 1-27.

[9] Mountasser, I., Ouhbi, B., Hdioud, F. and Frikh, B. "Semantic-based Big Data integration framework using

scalable distributed ontology matching strategy." Distributed and Parallel Databases 39 (2021): 891-937.

[10] Stripelis, Dimitris, Chrysovalantis Anastasiou, and José Luis Ambite. "Extending apache spark with a mediation

layer." In Proceedings of the International Workshop on Semantic Big Data, pp. 1-6. 2018.

[11] https://wordnet.princeton.edu/.

[12] https://www.openacademic.ai/oag/.

126

	018

