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Abstract. Providing a consistent and unifying view of all data is a challenging task in the big data context 

because each big data store has its own data model and permits flexible schema. Moreover, advanced 

technologies (such as Hadoop MapReduce, Apache Spark) are needed to be able to leverage the integration 

process of big data. Although differences in data models can be solved by using Apache Spark, it cannot be 

used for integrating data with different data schemas. For these reasons, a semantic-based data integration 

approach is proposed to provide a unified view of data in different big data stores. The approach generates 

schemas by means of local ontologies for data in different big data stores and merges extracted ontologies by 

using the proposed alignment algorithm. Then, the global (integrated) ontology is converted to the schema 

using the Spark Dataset API. The schema is used in the data integration step. The main steps of the proposed 

system are to align local ontologies for global ontology construction, convert global (integrated) ontology to 

schema in the form of Apache Spark Dataset, and integrate data by applying the schema. The proposed 

approach is implemented on top of the Apache Spark framework, and the study uses Apache Cassandra and 

MongoDB as big data stores. Experimental evaluation is conducted to verify the accuracy of the proposed 

approach. 
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1. Introduction

With the proliferation of digital technologies, businesses and organizations are generating vast amounts

of data every day. These data may be stored in different big data stores based on their needs. Data in 

different big data stores needs to be used and provide a unified view to get precise insight in some domains 

(i.e., academic, transport, energy). The NoSQL data systems [1] are innovative database technologies for 

storing big data. NoSQL data systems allow adding new data records with different schemas to the same 

table dynamically. There are four main types (document-oriented, columnar, key-value, and graph) of data 

models in NoSQL databases [2]. Document-oriented data model provides data entities as documents. The 

documents may be JSON, BSON, or XML format. Examples of document-oriented NoSQL data stores are 

MongoDB and DynamoDB. The columnar model provides for storing data in columns instead of rows. 

Apache Cassandra implements such type of data model. Key-value data model allows the simplest data 

structure, where the data (values) are accessed by strings called keys. The data stores, such as BerkeleyDB 

and Riak, are implemented on this model. Graph data model allows data entities to be nodes in a connected 

graph, and relationships between each entity are expressed by properties and labels. The popular graph-based 

NoSQL databases are Neo4J and InfoGrid.  

Providing a unified view of data is a challenging task in the big data context because of the heterogeneity 

of data models and data semantics (schema) in big data stores [1]. Heterogeneity problems can be addressed 

by using ontology. Ontologies are formal representation, have been used in data integration systems because 

they provide an explicit and machine-understandable conceptualization of a domain [3]. With the volume 

and variety challenges in the big data context, data integration task requires a combination of advanced 

technologies (such as Hadoop MapReduce, Apache Spark). Apache Spark [4] provides an interface that 

allows to program large clusters with implicit data parallelism. Data from different data sources can be 

translated into a built-in data structure (immutable lists, data frames) with Spark.  

The proposed system is implemented using Apache Spark to homogenize data in different data stores and 

improve the performance of the system. Apache Spark native data integration operators allow data with the 
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same schema to be integrated. Therefore, we apply ontology in the common schema extraction phase for big 

data contexts. In this study, MongoDB (document-oriented NoSQL database) and Apache Cassandra 

(columnar NoSQL database) are used as data sources. In order to provide a unified view of data in NoSQL 

data systems, the proposed system follows four steps. These are homogenizing data from different data stores, 

common schema extraction using ontology, transforming formal representation of schema to spark dataset 

schema, and integrating data using spark dataset schema.  

The remainder of the paper is organized as follows: Section 2 explains Apache Spark, and the ontology-

based big data integration is described in Section 3. The literature survey is presented in Section 4, and the 

proposed system is explained in Section 5. Section 6 describes the testing environment and experimental 

results. Finally, the conclusion is in Section 7.  

2. Apache Spark 

Apache Spark is an open-source cluster computing platform for batch and real-time data processing. 

Apache Spark's key feature is in-memory cluster computing, which boosts an application's processing speed. 

It's built to handle a variety of workloads, including batch applications, iterative algorithms, interactive 

queries, and streaming [5]. Spark effectively hides the complexities of distributed processing behind a 

convenient API. Data sources can be translated into immutable lists (data frames, dataset) and then 

transformed with a declarative API based on functional programming primitives (such as map, fold, and 

groupBy). Spark will split data in the background, distribute the partitions to a cluster of machines, optimize 

user-provided computations to reduce data movement, and apply them in parallel [4]. It can be used as a 

standalone framework on a single machine, with one executor for each CPU core. A cluster manager, such as 

Spark's standalone cluster manager, YARN, or Mesos, will manage the cluster of servers that Spark will use 

to execute tasks. In the Apache Spark framework, the data is read into a dataset (Spark's main data structure) 

by the Spark Context object. Spark can read input files, automatically deduce the schema, and load it as a 

native dataset using Spark SQL. 

3. Ontology-based Data Integration 

An ontology specifies concepts as well as the relationships that exist between them in the specified 

domain. Ontologies are used in data integration for five applications [3]: 

• Local ontology construction for each data source's metadata (source schemas), 

• Global ontology construction for providing a conceptual view of the schematically heterogeneous 

source schemas, 

• Supporting high-level queries (building a query without specialized knowledge of the different data 

sources), 

• Declarative mediation (global ontology is used as a declarative mediator for query rewriting between 

peers), 

• Mapping support by providing a thesaurus, formalized in terms of an ontology. 

Our system applied ontology for local ontologies construction and global conceptualization in common 

schema extraction. 

4. Related Works 

Some authors presented ontology-based approaches to solve heterogeneity problems (data models, 

semantics (schema)) in big data integration. Cure et al. proposed a data integration system [6] to retrieve 

information effectively. The proposed system has been implemented using Apache Cassandra and MongoDB 

to overcome different data models and schemas of these data stores. They create local ontologies and build a 

global ontology based on the local ontologies' alignment results. To harmonize the two local ontologies, they 

used several alignment methods. They enriched local ontologies for alignment using the IDDL reasoner. 

Then, for simple correspondences, they applied three alignment methods (OWL-lite Alignment, AROMA [7], 

and JWNL Alignment). They adopted graph formalism for complex correspondences. Abbes et. al presented 

MongoDB-based big data integration approach using modular ontologies [8] to address structural (data 

schema) heterogeneity. In matching local ontologies step for generating global ontology, the Levenshtein 
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distance dissimilarity function is used for string matching and Wu and Palmer similarity measure are adopted 

for discovering structural similarity. Their approach used MongoDB as data sources and generated OWL as 

target data format. Mountasser et al. proposed a semantic-based big data integration framework with the aim 

of addressing big data challenges [9] and the variety of data schema problems. Their approach parses the 

entities in local ontology and stores them in HBase. In the matching steps, a clustering approach with several 

alignment methods (language-based, string-based, and graph-based) is used. This framework was 

implemented on top of Hadoop MapReduce and allowed structured, semi-structured, and unstructured data 

as input data. Finally, the complex correspondences are discovered by graph formalism. The proposed 

framework extracts OWL as the target data format. Stripelis et al. proposed a virtual mediation layer for data 

integration on top of Apache Spark [10] while considering the different data format. Data in PostgreSQL 

DBMS, XML data in the eXtensible Neuroimaging Archiving Toolkit (XNAT), and data in MySQL DBMS 

are used in the system. 

Among the related works, big data processing tools are used for improving the performance of the 

system in the two systems [9-10]. And all above mentioned works applied ontologies in common schema 

extraction and data integration phases.  Our proposed system is implemented on top of Apache Spark to 

overcome data models heterogeneity problem and only applied ontologies for common schema extraction 

because of limitation for the size of the memory in which data (triple format) level integration. Moreover, the 

study presents semantic-based approach to solve data semantics(schema) heterogeneities problem. 

5. The Proposed System 

To provide a unified view of data in different NoSQL databases, the proposed system follows three tasks: 

These are homogenizing data sources, sematic-based common schema extraction, and data integration by 

applying common schema. It uses MongoDB and Cassandra as the data sources. The proposed system is 

implemented on top of Apache Spark to overcome the heterogeneity challenge in the data model of NoSQL 

databases (MongoDB, Cassandra). The overall system architecture is depicted in Fig 1. 

 

5.1. Homogenizing Data 

Data are loaded from MongoDB and Apache Cassandra onto the Apache Spark framework as native 

datasets using Spark SQL. The Spark native dataset is formed as a table in the RDBMS. Common schema 

extraction and data integration processes are performed on these native datasets. The number of datasets 
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Fig. 1: The overall system architecture. 
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depends on the number of loaded tables from Cassandra and the number of loaded documents from 

MongoDB to be integrated. 

5.2. Semantic-based Common Schema Extraction 

Each data source may contain data with different schemas in the same domain based on application 

needs. Moreover, NoSQL databases allow different schemas in the same table. Apache Spark native data 

integration UNION operator cannot integrate if it is not in the same schema. The JOIN operator integrates all 

columns from both datasets, but it does not consider column duplication. Therefore, a semantic-based 

common schema extraction algorithm is proposed in this system. There are three main steps in this task: 

generating local ontologies from each source, extracting global ontology by merging local ontologies, and 

converting global ontology to the Spark dataset schema. 

5.2.1. Generating Local Ontologies from each source 

In this step, schemas from each dataset are mapped to local ontologies using the mapping algorithm. 

Spark dataset schema forms the same structure as schema of table in Relational Database.  To generate local 

ontology, the proposed system creates a class for each data set. Then, columns that have primitive types are 

mapped to data properties of the class and columns that have complex types (array, struct, map) are 

transformed into object properties of the class. Then, annotation for the object property is added based on 

their type. After that, the created class is inserted into the ontology. After this step, the two local ontologies 

for loaded data from Cassandra and data from MongoDB are extracted. 

Algorithm 1: Mapping algorithm 

Input: spark datasets 

Output: Local Ontology 

BEGIN 

FOR each dataset 

Create a class. 

Transform columns that have primitive types into dataProperties of the class. 

Map columns that have complex types(array,struct,map) to objectProperties of the class and annotate 

objectProperties based on its type . 

Add created class in the ontology. 

END FOR 

END 

5.2.2. Extracting Global Ontology by Merging Local Ontologies 

Before merging the two local ontologies, the proposed system aligns each class of ontology with every 

class of other ontology. To do so, the study firstly compares two strings for class names, data properties 

names, and object properties names of two different local ontologies by using the Jaccard similarity measure. 

Then, the two different strings are semantically compared by using WordNet [11].  

The ontology class may contain data properties and object properties. The proposed system considers the 

names and types of the data property for the similarity of two data properties calculation of the two different 

classes δ (c.dPro , c'.dPro) as presented in equation 1.  

𝛿(𝑐. 𝑑𝑃𝑟𝑜, 𝑐′. 𝑑𝑃𝑟𝑜) = 0.5 ∗ 𝛿(𝑐. 𝑑𝑃𝑟𝑜𝑁𝑎𝑚𝑒, 𝑐′. 𝑑𝑃𝑟𝑜𝑁𝑎𝑚𝑒) + 0.5 ∗ 𝛿( 𝑐. 𝑑𝑇𝑦𝑝𝑒 , 𝑐′. 𝑑𝑇𝑦𝑝𝑒)            (1) 

The object properties of the two classes in different local ontologies are compared by using names and 

ranges of objectProperties as expressed in equation 2. 

𝛿 (𝑐. 𝑜𝑃𝑟𝑜, 𝑐′. 𝑜𝑃𝑟𝑜) = 0.5 ∗ 𝛿(𝑐. 𝑜𝑃𝑟𝑜𝑁𝑎𝑚𝑒, 𝑐′. 𝑜𝑃𝑟𝑜𝑁𝑎𝑚𝑒) + 0.5 ∗ 𝛿( 𝑐. 𝑅𝑎𝑛𝑔𝑒 , 𝑐′. 𝑅𝑎𝑛𝑔𝑒)        (2) 

The ontologies alignment procedure takes the two local ontologies as input and returns the alignment 

result as expressed in algorithm 2. The alignment result is an array of the most similar class pairs for each 

class. After calculating the similarity of each class of the two ontologies, the classes pair which has 

maximum similarity in the alignment result is selected.  

The study applies the cosine similarity measure for comparing two different classes calculation. 

Therefore, the two classes are needed to be transformed into the two vectors based on the alignment result 

(similarity scores of classes names, similarity scores of each data property, and similarity scores of each 
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object property). After transforming vectors for the two selected classes, the similarity score of the two 

different classes δ (c, c' )  is calculated by using equation 3. The measure finds the dot product of the vectors 

divided by the product of their lengths to get similarity of two classes. 

𝛿(𝑐, 𝑐′) =
𝑐.𝑐′⃗⃗⃗⃗

‖𝑐‖⋅‖𝑐′⃗⃗ ⃗⃗ ‖
        (3) 

The classes in the two ontologies are merged based on the similarity score of the two different classes to 

generate global ontology. The classes merging procedure has two conditions to merge the two classes. The 

two classes c and c′ are merged into the common class in the global ontology if the similarity level of the pair 

is 1.0. This means that the two schemas are completely the same. The two classes c and c′ are merged after 

doing some update c if the similarity level of the pair is less than 1.0 and greater than or equal to 0.5. The 

classes pair which similarity levels below 0.5 are not merged. Each class of these pair is created in global 

ontology. 

5.2.3. Converting Global Ontology to Spark Dataset Schema 

In this step, the system converts global ontology to spark data schema because data integration process 

implemented by Spark Dataset API. The transforming ontology to spark dataset schema procedure is 

described in algorithm 3.  The schema will be used in the data integration phase as the common schema from 

two different sources. 

5.3. Data Integration by Applying Spark Dataset Schema 

By using spark dataset schema, data from different sources are integrated into JSON file. The file is 

ready to use for later tasks in data management. 

6. Experiments 

For our experiments, Apache Spark version 3.0.1 on Windows 10 Pro machine equipped with an Intel 

Core i5-950 processor at 2.8 GHz and 8GB of RAM are used.  The proposed system is deployed by 

standalone cluster mode using 3 Spark executors allocating 2 cores and 2GB of RAM for each one.  As big 

data stores, Apache Cassandra 3.10 and MongoDB 3.6 are used. OWL API 5.0 version for ontologies 

Algorithm 2: Ontologies alignment algorithm 

Input: Two ontologies o and o′ 

Output: AlignResult 

BEGIN 

FOREACH class c of o DO 

    FOREACH class c′ of o′ DO 

        Calculate δ(c.dPro,c'.dPro)  by equation 1 

        Calculate δ(c.oPro,c'.oPro)  by equation 2 

        Calculate δ (c, c′) by equation 3 

  Set c, c′ and δ (c, c′) to simpairs 

   END FOR. 

 Set max (simpairs) to ALignResult 

      END FOR 

END 

Algorithm 3: Transforming ontology to spark dataset schema algorithm.  

Input: Global ontology 

Output: spark dataset  

BEGIN 

   FOR each class of the global ontology 

      Create a dataset. 

      Transform data properties of the class into columns of the dataset and the types of columns is based on type of   

data properties. 

      Map object properties of the class to columns of the dataset and the types of columns is based on annotation of 

object properties. 

     END FOR 

END 
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construction is used. As a testing dataset, this study uses MAG data (papers, authors, venue) and AMier data 

(papers, authors, venue) that are available in [12]. To verify accuracy of the proposed semantic-based 

common schema extraction approach in terms of precision, recall and F-measure as shown in Fig 2. We 

observe that the accuracy result is the same when setting threshold (0.7,0.8, 0.9) in the matching stage. The 

lower and higher threshold may affect the accuracy result. Therefore, the proposed system will be used 

threshold (0.8) as optimal threshold value for matching ontologies.  

 

Fig. 2: The accuracy of proposed common schema extraction approach. 

7. Conclusion 

Providing a unified view of data integration in different NoSQL databases is a challenging task because 

of the heterogeneity of data models and data schemas. Moreover, data integration for big data context is 

required with the aid of big data processing framework. Therefore, a semantic-based big data integration 

approach is proposed. The proposed system applies ontology in the common schema extraction phase and 

implements on top of apache spark. Evaluation is conducted to verify the accuracy of the common schema 

extraction by means of Precision, Recall, and F-measure. The result shows that accuracy is steady when 

setting threshold (0.7, 0.8, 0.9).  Therefore, the study choses threshold value (0.8) for our proposed system. 

As a future work, the accuracy of the proposed approach will be verified by other datasets and the 

performance of the system will be observed. 
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